Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Infect Dis ; 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2324913

ABSTRACT

BACKGROUND: Face masks have been critical in the COVID-19 pandemic, but supplies were sometimes limited and disposable masks contribute greatly to environmental waste. Studies suggest that filtration capacity is retained with repeated use, and surveys indicate many people re-use surgical masks. However, the impact of mask re-use on the host is under-studied. METHODS: We applied 16S rRNA gene sequencing to investigate the bacterial microbiome of the facial skin and oropharynx of individuals randomized to wearing fresh surgical masks daily versus masks re-used for one week. RESULTS: Compared to daily fresh masks, re-use was associated with increased richness (number of taxa) of the skin microbiome and trend towards greater diversity, but no difference in the oropharyngeal microbiome. Used masks had either skin-dominant or oropharynx-dominant bacterial sequences, and re-used masks had >100-fold higher bacterial content but no change in composition compared to those used for one day. CONCLUSIONS: One week of mask re-use increased the number of low-abundance taxa on the face but did not impact the upper respiratory microbiome. Thus, face mask re-use has little impact on the host microbiome, though whether minor changes to the skin microbiome might relate to reported skin sequelae of masking ("maskne") remains to be determined.

2.
mBio ; : e0378821, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-2270955

ABSTRACT

The severe acute respiratory coronavirus-2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. Evidence suggests that the virus is evolving to allow efficient spread through the human population, including vaccinated individuals. Here, we report a study of viral variants from surveillance of the Delaware Valley, including the city of Philadelphia, and variants infecting vaccinated subjects. We sequenced and analyzed complete viral genomes from 2621 surveillance samples from March 2020 to September 2021 and compared them to genome sequences from 159 vaccine breakthroughs. In the early spring of 2020, all detected variants were of the B.1 and closely related lineages. A mixture of lineages followed, notably including B.1.243 followed by B.1.1.7 (alpha), with other lineages present at lower levels. Later isolations were dominated by B.1.617.2 (delta) and other delta lineages; delta was the exclusive variant present by the last time sampled. To investigate whether any variants appeared preferentially in vaccine breakthroughs, we devised a model based on Bayesian autoregressive moving average logistic multinomial regression to allow rigorous comparison. This revealed that B.1.617.2 (delta) showed 3-fold enrichment in vaccine breakthrough cases (odds ratio of 3; 95% credible interval 0.89-11). Viral point substitutions could also be associated with vaccine breakthroughs, notably the N501Y substitution found in the alpha, beta and gamma variants (odds ratio 2.04; 95% credible interval of1.25-3.18). This study thus overviews viral evolution and vaccine breakthroughs in the Delaware Valley and introduces a rigorous statistical approach to interrogating enrichment of breakthrough variants against a changing background. IMPORTANCE SARS-CoV-2 vaccination is highly effective at reducing viral infection, hospitalization and death. However, vaccine breakthrough infections have been widely observed, raising the question of whether particular viral variants or viral mutations are associated with breakthrough. Here, we report analysis of 2621 surveillance isolates from people diagnosed with COVID-19 in the Delaware Valley in southeastern Pennsylvania, allowing rigorous comparison to 159 vaccine breakthrough case specimens. Our best estimate is a 3-fold enrichment for some lineages of delta among breakthroughs, and enrichment of a notable spike substitution, N501Y. We introduce statistical methods that should be widely useful for evaluating vaccine breakthroughs and other viral phenotypes.

4.
Biomaterials ; 288: 121671, 2022 09.
Article in English | MEDLINE | ID: covidwho-1936091

ABSTRACT

Because oral transmission of SARS-CoV-2 is 3-5 orders of magnitude higher than nasal transmission, we investigated debulking of oral viruses using viral trap proteins (CTB-ACE2, FRIL) expressed in plant cells, delivered through the chewing gum. In omicron nasopharyngeal (NP) samples, the microbubble count (based on N-antigen) was significantly reduced by 20 µg of FRIL (p < 0.0001) and 0.925 µg of CTB-ACE2 (p = 0.0001). Among 20 delta or omicron NP samples, 17 had virus load reduced below the detection level of spike protein in the RAPID assay, after incubation with the CTB-ACE2 gum powder. A dose-dependent 50% plaque reduction with 50-100 ng FRIL or 600-800 µg FRIL gum against Influenza strains H1N1, H3N2, and Coronavirus HCoV-OC43 was observed with both purified FRIL, lablab bean powder or gum. In electron micrographs, large/densely packed clumps of overlapping influenza particles and FRIL protein were observed. Chewing simulator studies revealed that CTB-ACE2 release was time/dose-dependent and release was linear up to 20 min chewing. Phase I/II placebo-controlled, double-blinded clinical trial (IND 154897) is in progress to evaluate viral load in saliva before or after chewing CTB-ACE2/placebo gum. Collectively, this study advances the concept of chewing gum to deliver proteins to debulk oral viruses and decrease infection/transmission.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Angiotensin-Converting Enzyme 2 , Chewing Gum , Cytoreduction Surgical Procedures , Humans , Influenza A Virus, H3N2 Subtype , Plant Proteins , Powders , SARS-CoV-2 , Viral Proteins
5.
J Mol Diagn ; 24(7): 727-737, 2022 07.
Article in English | MEDLINE | ID: covidwho-1921131

ABSTRACT

Reopening of schools and workplaces during the ongoing coronavirus disease 2019 (COVID-19) pandemic requires affordable and convenient population-wide screening methods. Although upper respiratory swab is considered the preferable specimen for testing, saliva offers several advantages, such as easier collection and lower cost. In this study, we compared the performance of saliva with upper respiratory swab for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. Paired saliva and anterior nares specimens were collected from a largely asymptomatic cohort of students, faculty, and staff from the University of Pennsylvania. Paired saliva and combined nasopharyngeal/oropharyngeal (NP/OP) specimens were also collected from hospitalized patients with symptomatic COVID-19 following confirmatory testing. All study samples were tested by real-time PCR in the Hospital of the University of Pennsylvania. In the university cohort, positivity rates were 37 of 2500 for saliva (sensitivity, 86.1%) and 36 of 2500 for anterior nares (sensitivity, 83.7%), with an overall agreement of 99.6%. In the hospital study cohort, positivity rates were 35 of 49 for saliva (sensitivity, 89.3%) and 28 of 49 for NP/OP (sensitivity, 75.8%), with an overall agreement of 75.6%. A larger proportion of saliva than NP/OP samples tested positive after 4 days of symptom onset in hospitalized patients. Our results show that saliva has an acceptable sensitivity and is comparable to upper respiratory swab, supporting the use of saliva for SARS-CoV-2 detection in both symptomatic and asymptomatic populations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods , Universities
6.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1510414

ABSTRACT

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Animals , Chewing Gum , Cricetinae , Cricetulus , Cytoreduction Surgical Procedures , Humans , Protein Binding , SARS-CoV-2 , Saliva/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
7.
Anal Chem ; 93(38): 13063-13071, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1428693

ABSTRACT

Short of a vaccine, frequent and rapid testing, preferably at home, is the most effective strategy to contain the COVID-19 pandemic. Herein, we report on single-stage and two-stage molecular diagnostic tests that can be carried out with simple or no instrumentation. Our single-stage amplification is reverse transcription-loop mediated isothermal amplification (RT-LAMP) with custom-designed primers targeting the ORF1ab and the N gene regions of the virus genome. Our new two-stage amplification, dubbed Penn-RAMP, comprises recombinase isothermal amplification (RT-RPA) as its first stage and LAMP as its second stage. We compared various sample preparation strategies aimed at deactivating the virus while preserving its RNA and tested contrived and patient samples, consisting of nasopharyngeal swabs, oropharyngeal swabs, and saliva. Amplicons were detected either in real time with fluorescent intercalating dye or after amplification with the intercalating colorimetric dye LCV, which is insensitive to sample's PH. Our single RT-LAMP tests can be carried out instrumentation-free. To enable concurrent testing of multiple samples, we developed an inexpensive heat block that supports both the single-stage and two-stage amplification. Our RT-LAMP and Penn-RAMP assays have, respectively, analytical sensitivities of 50 and 5 virions/reaction. Both our single- and two-stage assays have successfully detected SARS-CoV-2 in patients with viral loads corresponding to the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) threshold cycle smaller than 32 while operating with minimally processed samples, without nucleic acid isolation. Penn-RAMP provides a 10-fold better sensitivity than RT-LAMP and does not need thermal cycling like PCR assays. All reagents are amenable to dry, refrigeration-free storage. The SARS-CoV-2 test described herein is suitable for screening at home, at the point of need, and in resource-poor settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pandemics , Point-of-Care Systems , RNA, Viral/genetics , Sensitivity and Specificity
8.
Genome Biol ; 22(1): 169, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1388811

ABSTRACT

BACKGROUND: Rapid spread of SARS-CoV-2 has led to a global pandemic, resulting in the need for rapid assays to allow diagnosis and prevention of transmission. Reverse transcription-polymerase chain reaction (RT-PCR) provides a gold standard assay for SARS-CoV-2 RNA, but instrument costs are high and supply chains are potentially fragile, motivating interest in additional assay methods. Reverse transcription and loop-mediated isothermal amplification (RT-LAMP) provides an alternative that uses orthogonal and often less expensive reagents without the need for thermocyclers. The presence of SARS-CoV-2 RNA is typically detected using dyes to report bulk amplification of DNA; however, a common artifact is nonspecific DNA amplification, which complicates detection. RESULTS: Here we describe the design and testing of molecular beacons, which allow sequence-specific detection of SARS-CoV-2 genomes with improved discrimination in simple reaction mixtures. To optimize beacons for RT-LAMP, multiple locked nucleic acid monomers were incorporated to elevate melting temperatures. We also show how beacons with different fluorescent labels can allow convenient multiplex detection of several amplicons in "single pot" reactions, including incorporation of a human RNA LAMP-BEAC assay to confirm sample integrity. Comparison of LAMP-BEAC and RT-qPCR on clinical saliva samples showed good concordance between assays. To facilitate implementation, we developed custom polymerases for LAMP-BEAC and inexpensive purification procedures, which also facilitates increasing sensitivity by increasing reaction volumes. CONCLUSIONS: LAMP-BEAC thus provides an affordable and simple SARS-CoV-2 RNA assay suitable for population screening; implementation of the assay has allowed robust screening of thousands of saliva samples per week.


Subject(s)
COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Nucleic Acid Probes/genetics , SARS-CoV-2/genetics , Saliva/virology , Sensitivity and Specificity
9.
mBio ; 12(4): e0177721, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1360545

ABSTRACT

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Subject(s)
Bacteria/classification , Dysbiosis/microbiology , Lung/microbiology , Nasopharynx/microbiology , Oropharynx/microbiology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Anelloviridae/classification , Anelloviridae/genetics , Anelloviridae/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/pathology , Female , Humans , Lymphocyte Count , Male , Microbiota , Middle Aged , RNA, Ribosomal, 16S/genetics , Severity of Illness Index
10.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066822

ABSTRACT

The severe acute respiratory coronavirus 2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. The epidemic accelerated in Philadelphia, PA, in the spring of 2020, with the city experiencing a first peak of infections on 15 April, followed by a decline through midsummer. Here, we investigate spread of the epidemic in the first wave in Philadelphia using full-genome sequencing of 52 SARS-CoV-2 samples obtained from 27 hospitalized patients collected between 30 March and 17 July 2020. Sequences most commonly resembled lineages circulating at earlier times in New York, suggesting transmission primarily from this location, though a minority of Philadelphia genomes matched sequences from other sites, suggesting additional introductions. Multiple genomes showed even closer matches to other Philadelphia isolates, suggestive of ongoing transmission within Philadelphia. We found that all of our isolates contained the D614G substitution in the viral spike and belong to lineages variously designated B.1, Nextstrain clade 20A or 20C, and GISAID clade G or GH. There were no viral sequence polymorphisms detectably associated with disease outcome. For some patients, genome sequences were determined longitudinally or concurrently from multiple body sites. In both cases, some comparisons showed reproducible polymorphisms, suggesting initial seeding with multiple variants and/or accumulation of polymorphisms after infection. These results thus provide data on the sources of SARS-CoV-2 infection in Philadelphia and begin to explore the dynamics within hospitalized patients.IMPORTANCE Understanding how SARS-CoV-2 spreads globally and within infected individuals is critical to the development of mitigation strategies. We found that most lineages in Philadelphia had resembled sequences from New York, suggesting infection primarily but not exclusively from this location. Many genomes had even nearer neighbors within Philadelphia, indicating local spread. Multiple genome sequences were available for some subjects and in a subset of cases could be shown to differ between time points and body sites within an individual, indicating heterogeneous viral populations within individuals and raising questions on the mechanisms responsible. There was no evidence that different lineages were associated with different outcomes in patients, emphasizing the importance of individual-specific vulnerability.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , A549 Cells , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Female , Genome, Viral , Humans , Male , Middle Aged , New York/epidemiology , Philadelphia/epidemiology , Phylogeny , Polymorphism, Genetic , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL